Roll No. | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Total No. of Pages : 02
Total No. of Questions: 07

B.Sc.(IT) (Sem.-1 ${ }^{\text {st }}$)
 BASIC MATHEMATICS-I
 Subject Code : BS-103
 Paper ID : [B0402]

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION-A

1. Write briefly :
(a) Empty set.
(b) Union of sets.
(c) State Binomial Theorem for positive integral index.
(d) Write dual of $(\mathrm{A} \cap \mho) \cap\left(\phi \cup \mathrm{A}^{\prime}\right)=\phi$.
(e) Prove that $\tan \mathrm{A}+\cot \mathrm{A}=\sec \mathrm{A} \cdot \operatorname{cosec} \mathrm{A}$.
(f) Construct a 2×3 matrix whose elements are given by $a_{i j}=i+2 j$.
(g) Calculate median Height,

$$
\text { Height (in cms) : 72, 62, 54, 75, 40, 52, 77, 70, 45, 47, } 55 .
$$

(h) Draw a one-way Table.
(i) Insert three geometric means between 3 and 48 .
(j) Which term of series $12+9+6+\ldots$ is equal to -30 ?

SECTION-B

2. (a) Find $\mathrm{A} \cap \mathrm{B}$ if $\mathrm{A}=\{x: x=3 n+1, n \leq 5, n \in \mathrm{~N}\}$ and $\mathrm{B}=\{x: x=4 n-5, n \leq 5, n \in \mathrm{~N}\}$.
(b) Find all partitions of $\mathrm{S}=\{1,2,3\}$.
3. If $\sin \theta=\frac{3}{5}, \theta$ being an acute angle, find the other t-ratios of the angle θ.
4. (a) Expand $(a+3 b)^{4}$ using Binomial theorem.
(b) Find the $10^{\text {th }}$ term in the expansion of $\left(x-y^{2}\right)^{14}$.
5. If $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{lll}4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$, then find AB and BA . Is $\mathrm{AB}=\mathrm{BA}$?
6. Calculate Mean, Median, Mode for the following data :

Marks more than	$:$	0	10	20	30	40	50
No. of students	$:$	50	46	40	20	10	3

7. (a) If the $14^{\text {th }}$ term of an arithmetic series is 6 and 6 th term of arithmetic series is 14 , find $95^{\text {th }}$ term.
(b) Sum to n terms the series :

$$
7+77+777+\ldots
$$

